摘要翻译:
证明了非交换约化李代数的交换簇的奇异轨迹包含在不规则轨迹中,并计算了不规则轨迹的余维数。我们证明了不规则轨迹的一个不可约分量的余维数为4。这就给出了奇异轨迹余维数的下界,特别地,暗示它至少为2。我们还证明了通勤变化是合理的。
---
英文标题:
《Irregular and singular loci of commuting varieties》
---
作者:
Vladimir L. Popov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We prove that the singular locus of the commuting variety of a noncommutative reductive Lie algebra is contained in the irregular locus and we compute the codimension of the latter. We prove that one of the irreducible components of the irregular locus has codimension 4. This yields the lower bound of the codimension of the singular locus, in particular, implies that it is at least 2. We also prove that the commuting variety is rational.
---
PDF链接:
https://arxiv.org/pdf/0801.3074