摘要翻译:
研究了正则奇异TERP-结构分类空间上的TT*-几何,例如孤立超曲面奇点的Brieskorn格的Fourier-Laplace变换。我们证明了这个分类空间的一部分可以规范地装备一个厄米结构。我们得到了这个hermitian度量的全纯截面曲率的估计,它类似于对纯极化Hodge结构空间分类的类似结果。
---
英文标题:
《Curvature of classifying spaces for Brieskorn lattices》
---
作者:
Claus Hertling, Christian Sevenheck
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
We study tt*-geometry on the classifying space for regular singular TERP-structures, e.g., Fourier-Laplace transformations of Brieskorn lattices of isolated hypersurface singularities. We show that (a part of) this classifying space can be canonically equipped with a hermitian structure. We derive an estimate for the holomorphic sectional curvature of this hermitian metric, which is the analogue of a similar result for classifying spaces of pure polarized Hodge structures.
---
PDF链接:
https://arxiv.org/pdf/0712.3691