英文标题:
《Monotone Martingale Transport Plans and Skorohod Embedding》
---
作者:
Mathias Beiglboeck and Pierre Henry-Labordere and Nizar Touzi
---
最新提交年份:
2017
---
英文摘要:
We show that the left-monotone martingale coupling is optimal for any given performance function satisfying the martingale version of the Spence-Mirrlees condition, without assuming additional structural conditions on the marginals. We also give a new interpretation of the left monotone coupling in terms of Skorokhod embedding which allows us to give a short proof of uniqueness.
---
中文摘要:
我们证明了对于满足Spence-Mirrlees条件的鞅版本的任何给定性能函数,左单调鞅耦合都是最优的,而无需在边缘上假设额外的结构条件。我们还根据Skorokhod嵌入对左单调耦合给出了一种新的解释,这使得我们能够给出唯一性的简短证明。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->