英文标题:
《Brownian Bridges on Random Intervals》
---
作者:
Matteo Ludovico Bedini, Rainer Buckdahn, Hans-J\\\"urgen Engelbert
---
最新提交年份:
2016
---
英文摘要:
The issue of giving an explicit description of the flow of information concerning the time of bankruptcy of a company (or a state) arriving on the market is tackled by defining a bridge process starting from zero and conditioned to be equal to zero when the default occurs. This enables to catch some empirical facts on the behavior of financial markets: when the bridge process is away from zero, investors can be relatively sure that the default will not happen immediately. However, when the information process is close to zero, market agents should be aware of the risk of an imminent default. In this sense the bridge process leaks information concerning the default before it occurs. The objective of this first paper on Brownian bridges on stochastic intervals is to provide the basic properties of these processes.
---
中文摘要:
明确描述上市公司(或国家)破产时间相关信息流的问题,通过定义一个从零开始并在违约发生时条件为等于零的过渡过程来解决。这使得我们能够抓住金融市场行为的一些实证事实:当过渡过程远离零时,投资者可以相对确定违约不会立即发生。然而,当信息过程接近于零时,市场代理人应该意识到即将发生违约的风险。从这个意义上说,桥接过程在缺省发生之前泄露了有关缺省的信息。第一篇关于随机区间上布朗桥的论文的目的是提供这些过程的基本性质。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->