英文标题:
《Fine Properties of the Optimal Skorokhod Embedding Problem》
---
作者:
Mathias Beiglb\\\"ock, Marcel Nutz, Florian Stebegg
---
最新提交年份:
2020
---
英文摘要:
We study the problem of stopping a Brownian motion at a given distribution $\\nu$ while optimizing a reward function that depends on the (possibly randomized) stopping time and the Brownian motion. Our first result establishes that the set $\\mathcal{T}(\\nu)$ of stopping times embedding $\\nu$ is weakly dense in the set $\\mathcal{R}(\\nu)$ of randomized embeddings. In particular, the optimal Skorokhod embedding problem over $\\mathcal{T}(\\nu)$ has the same value as the relaxed one over $\\mathcal{R}(\\nu)$ when the reward function is semicontinuous, which parallels a fundamental result about Monge maps and Kantorovich couplings in optimal transport. A second part studies the dual optimization in the sense of linear programming. While existence of a dual solution failed in previous formulations, we introduce a relaxation of the dual problem that exploits a novel compactness property and yields existence of solutions as well as absence of a duality gap, even for irregular reward functions. This leads to a monotonicity principle which complements the key theorem of Beiglb\\\"ock, Cox and Huesmann [Optimal transport and Skorokhod embedding, Invent. Math., 208:327-400, 2017]. We show that these results can be applied to characterize the geometry of optimal embeddings through a variational condition.
---
中文摘要:
我们研究了在给定分布$\\nu$下停止布朗运动,同时优化依赖于(可能随机的)停止时间和布朗运动的奖励函数的问题。我们的第一个结果确定,在随机嵌入集$\\mathcal{R}(\\nu)$中,停止时间嵌入集$\\mathcal{T}(\\nu)$是弱稠密的。特别地,当奖励函数为半连续时,$\\数学{T}(\\nu)$上的最优Skorokhod嵌入问题与$\\数学{R}(\\nu)$上的松弛问题具有相同的值,这与最优传输中Monge映射和Kantorovich耦合的基本结果相似。第二部分研究线性规划意义下的对偶优化问题。虽然对偶解的存在性在以前的公式中失败了,但我们引入了对偶问题的松弛,该问题利用了一个新的紧性性质,并产生了解的存在性以及对偶间隙的存在性,即使对于不规则的奖励函数也是如此。这导致了一个单调性原理,该原理补充了Beiglb“ock、Cox和Huesmann的关键定理【最优传输和Skorokhod嵌入,发明数学,208:327-4002017】。我们表明,这些结果可以通过变分条件来表征最优嵌入的几何特征。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->