摘要翻译:
基于物联网技术的可持续城市环境需要适当的政策管理。然而,这些政策是在潜在的、可能复杂的和长期的决策过程中制定的。因此,更好的政策需要改进和可核查的规划进程。为了对规划过程进行评估和评价,系统的透明度是关键,可以通过跟踪决策过程的来源来实现。然而,目前还没有一个系统可以跟踪城市规划和决策的完整周期。我们建议捕捉政策制定的完整过程,并研究物联网出处的作用,以支持政策分析和实施的设计制定。这项研究将在智慧城市的环境中进行论证,智慧城市的需求将推动研究进程。
---
英文标题:
《A Provenance Framework for Policy Analytics in Smart Cities》
---
作者:
Barkha Javed, Richard McClatchey, Zaheer Khan, and Jetendr Shamdasani
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computers and Society 计算机与社会
分类描述:Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7.
涵盖计算机对社会的影响、计算机伦理、信息技术和公共政策、计算机的法律方面、计算机和教育。大致包括ACM学科类K.0、K.2、K.3、K.4、K.5和K.7中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Sustainable urban environments based on Internet of Things (IoT) technologies require appropriate policy management. However, such policies are established as a result of underlying, potentially complex and long-term policy making processes. Consequently, better policies require improved and verifiable planning processes. In order to assess and evaluate the planning process, transparency of the system is pivotal which can be achieved by tracking the provenance of policy making process. However, at present no system is available that can track the complete cycle of urban planning and decision making. We propose to capture the complete process of policy making and to investigate the role of IoT provenance to support design-making for policy analytics and implementation. The environment in which this research will be demonstrated is that of Smart Cities whose requirements will drive the research process.
---
PDF链接:
https://arxiv.org/pdf/1804.07141