摘要翻译:
我们通过有限全纯映射研究了一个簇的拉回的局部几何。特别是,我们正在寻找$v=f^{-1}(W)$的属性,这样,如果$v$具有$A$属性,那么$W$必须具有$A$属性。我们证明$A$可以是正规性或前因式分解性的性质。在额外的假设下,我们还证明了$A$可以是光滑性的性质。
---
英文标题:
《Pullback of varieties by finite maps》
---
作者:
Jiri Lebl
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the local geometry of the pullback of a variety via a finite holomorphic map. In particular, we are looking for properties of $V = F^{-1}(W)$ such that if $V$ has the property $A$, then $W$ must have the property $A$. We show that $A$ can be the property of normality or prefactoriality. We also show that $A$ can be the property of smoothness, under extra assumptions.
---
PDF链接:
https://arxiv.org/pdf/0812.2498