摘要翻译:
定义在reals上的复代数簇当其Betti数之和与其实部的Betti数之和重合时是极大的。我们将在本文中证明维数为4的toric变体是最大的。
---
英文标题:
《Maximalite des varietes toriques de dimension 4》
---
作者:
Alexandre Sine
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
A complex algebraic variety defined over the reals is maximal when the sum of its Betti numbers for Borel Moore homology with $\zz$ coefficients coincides with the sum of the Betti numbers of its real part. We will show in this paper that toric varieties of dimension 4 are maximal.
---
PDF链接:
https://arxiv.org/pdf/0803.3196