英文标题:
《Unbounded Dynamic Programming via the Q-Transform》
---
作者:
Qingyin Ma, John Stachurski, Alexis Akira Toda
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
---
英文摘要:
We propose a new approach to solving dynamic decision problems with unbounded rewards based on the transformations used in Q-learning. In our case, the objective of the transform is to convert an unbounded dynamic program into a bounded one. The approach is general enough to handle problems for which existing methods struggle, and yet simple relative to other techniques and accessible for applied work. We show by example that many common decision problems satisfy our conditions.
---
PDF下载:
-->