英文标题:
《Stock price direction prediction by directly using prices data: an
empirical study on the KOSPI and HSI》
---
作者:
Yanshan Wang
---
最新提交年份:
2017
---
英文摘要:
The prediction of a stock market direction may serve as an early recommendation system for short-term investors and as an early financial distress warning system for long-term shareholders. Many stock prediction studies focus on using macroeconomic indicators, such as CPI and GDP, to train the prediction model. However, daily data of the macroeconomic indicators are almost impossible to obtain. Thus, those methods are difficult to be employed in practice. In this paper, we propose a method that directly uses prices data to predict market index direction and stock price direction. An extensive empirical study of the proposed method is presented on the Korean Composite Stock Price Index (KOSPI) and Hang Seng Index (HSI), as well as the individual constituents included in the indices. The experimental results show notably high hit ratios in predicting the movements of the individual constituents in the KOSPI and HIS.
---
中文摘要:
股市走势预测可以作为短期投资者的早期推荐系统,也可以作为长期股东的早期财务困境预警系统。许多股票预测研究侧重于使用宏观经济指标(如CPI和GDP)来训练预测模型。然而,宏观经济指标的日常数据几乎不可能获得。因此,这些方法很难在实践中使用。在本文中,我们提出了一种直接使用价格数据预测市场指数方向和股票价格方向的方法。本文对韩国综合股价指数(KOSPI)和恒生指数(HSI)以及指数中包含的单个成分进行了广泛的实证研究。实验结果表明,在预测KOSPI和HIS中单个成分的运动时,命中率显著较高。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->