英文标题:
《An explicit Euler scheme with strong rate of convergence for financial
SDEs with non-Lipschitz coefficients》
---
作者:
Jean-Francois Chassagneux, Antoine Jacquier, Ivo Mihaylov
---
最新提交年份:
2016
---
英文摘要:
We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit Euler-Maruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathematical finance literature, including the Cox-Ingersoll-Ross~(CIR), the 3/2 and the Ait-Sahalia models, as well as a family of mean-reverting processes with locally smooth coefficients. We numerically illustrate the strong convergence of the scheme and demonstrate its efficiency in a multilevel Monte Carlo setting.
---
中文摘要:
我们考虑具有非Lipschitz漂移或扩散系数的随机微分方程(SDE)的逼近。我们提出了一种改进的显式Euler-Maruyama离散格式,该格式允许我们证明强收敛性,且收敛速度很快。在一定的正则性和可积性条件下,我们得到了最优的强错误率。我们将此方案应用于数学金融文献中广泛使用的SDE,包括Cox-Ingersoll-Ross~(CIR)、3/2和Ait-Sahalia模型,以及一系列具有局部光滑系数的均值回复过程。我们用数值方法证明了该格式的强收敛性,并在多级蒙特卡罗环境下证明了其有效性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
PDF下载:
-->