假设一定要在R实现的话,
请用package(rgarch).
这个结果跟在E-views是接近的.
variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel="GARCH" );
mean.model=list(armaOrder=c(3,0),include.mean=T,garchInMean=F,inMeanType=1, fixed.pars=list(ar1=0,ar2=0)) ;
spec=ugarchspec(variance.model=variance.model,mean.mode=mean.model,distribution.model="std");
fit=ugarchfit(data=data,spec=spec,out.sample=0)
fit
Optimal Parameters
--------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.031234 0.028875 1.08170 0.279387
ar1 0.012873 0.019377 0.66434 0.506474
ar2 -0.001446 0.003798 -0.38073 0.703405
ar3 0.056283 0.019590 2.87308 0.004065
omega 0.040826 0.013945 2.92760 0.003416
alpha1 0.078060 0.013820 5.64815 0.000000
beta1 0.912741 0.014631 62.38241 0.000000
shape 5.014735 0.549575 9.12476 0.000000
###################e-views
Coefficient Std. Error z-Statistic Prob.
AR(3) 0.056202 0.019977 2.813417 0.0049
Variance Equation
C 0.037720 0.012220 3.086726 0.0020
RESID(-1)^2 0.075827 0.011784 6.434532 0.0000
GARCH(-1) 0.915578 0.012281 74.55062 0.0000
T-DIST. DOF 5.168727 0.591498 8.738364 0.0000