英文标题:
《Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility
Model》
---
作者:
Dan Pirjol, Lingjiong Zhu
---
最新提交年份:
2017
---
英文摘要:
We consider the stochastic volatility model $dS_t = \\sigma_t S_t dW_t,d\\sigma_t = \\omega \\sigma_t dZ_t$, with $(W_t,Z_t)$ uncorrelated standard Brownian motions. This is a special case of the Hull-White and the $\\beta=1$ (log-normal) SABR model, which are widely used in financial practice. We study the properties of this model, discretized in time under several applications of the Euler-Maruyama scheme, and point out that the resulting model has certain properties which are different from those of the continuous time model. We study the asymptotics of the time-discretized model in the $n\\to \\infty$ limit of a very large number of time steps of size $\\tau$, at fixed $\\beta=\\frac12\\omega^2\\tau n^2$ and $\\rho=\\sigma_0^2\\tau$, and derive three results: i) almost sure limits, ii) fluctuation results, and iii) explicit expressions for growth rates (Lyapunov exponents) of the positive integer moments of $S_t$. Under the Euler-Maruyama discretization for $(S_t,\\log \\sigma_t)$, the Lyapunov exponents have a phase transition, which appears in numerical simulations of the model as a numerical explosion of the asset price moments. We derive criteria for the appearance of these explosions.
---
中文摘要:
我们考虑随机波动率模型$dS\\u t=\\ sigma\\t S\\t dW\\t,d\\sigma\\u t=\\ omega\\sigma\\t dZ\\t$,其中$(W\\u t,Z\\t)$是不相关的标准布朗运动。这是赫尔-怀特和$\\贝塔=1$(对数正态)SABR模型的特例,在金融实践中广泛使用。我们研究了在Euler-Maruyama格式的几种应用下进行时间离散的该模型的性质,并指出所得到的模型具有某些不同于连续时间模型的性质。我们研究了在固定的$\\ beta=\\ frac12\\omega^2\\tau n^2$和$\\ rho=\\ sigma\\u 0^2\\tau$下,大量$\\ tau$大小的时间步长的$\\ n \\ infty$极限下的时间离散化模型的渐近性,并得出了三个结果:i)几乎确定的极限,ii)波动结果,以及iii)S\\t$正整数矩的增长率(Lyapunov指数)的显式表达式。在Euler-Maruyama离散$(S\\t、\\log\\sigma\\t)$下,Lyapunov指数有一个相变,这在模型的数值模拟中表现为资产价格矩的数值爆炸。我们推导出了这些爆炸出现的标准。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->