英文标题:
《Distributions of Centrality on Networks》
---
作者:
Krishna Dasaratha
---
最新提交年份:
2019
---
英文摘要:
We provide a framework for determining the centralities of agents in a broad family of random networks. Current understanding of network centrality is largely restricted to deterministic settings, but practitioners frequently use random network models to accommodate data limitations or prove asymptotic results. Our main theorems show that on large random networks, centrality measures are close to their expected values with high probability. We illustrate the economic consequences of these results by presenting three applications: (1) In network formation models based on community structure (called stochastic block models), we show network segregation and differences in community size produce inequality. Benefits from peer effects tend to accrue disproportionately to bigger and better-connected communities. (2) When link probabilities depend on geography, we can compute and compare the centralities of agents in different locations. (3) In models where connections depend on several independent characteristics, we give a formula that determines centralities \'characteristic-by-characteristic\'. The basic techniques from these applications, which use the main theorems to reduce questions about random networks to deterministic calculations, extend to many network games.
---
中文摘要:
我们提供了一个框架,用于确定广泛随机网络家族中代理的中心性。目前对网络中心性的理解主要局限于确定性设置,但从业者经常使用随机网络模型来适应数据限制或证明渐近结果。我们的主要定理表明,在大型随机网络上,中心度测度以很高的概率接近其期望值。我们通过三个应用来说明这些结果的经济后果:(1)在基于社区结构的网络形成模型(称为随机块模型)中,我们表明网络隔离和社区规模的差异会产生不平等。同伴效应的好处往往会不成比例地累积到更大、联系更好的社区。(2) 当链接概率取决于地理位置时,我们可以计算和比较不同位置的代理的中心度。(3) 在连接依赖于几个独立特征的模型中,我们给出了一个公式来确定中心度“一个特征一个特征”。这些应用程序的基本技术使用主要定理将随机网络问题简化为确定性计算,并扩展到许多网络游戏。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->