英文标题:
《Optimal Brownian Stopping between radially symmetric marginals in
general dimensions》
---
作者:
Nassif Ghoussoub, Young-Heon Kim, and Tongseok Lim
---
最新提交年份:
2017
---
英文摘要:
Given an initial (resp., terminal) probability measure $\\mu$ (resp., $\\nu$) on $\\mathbb{R}^d$, we characterize those optimal stopping times $\\tau$ that maximize or minimize the functional $\\mathbb{E} |B_0 - B_\\tau|^{\\alpha}$, $\\alpha > 0$, where $(B_t)_t$ is Brownian motion with initial law $B_0\\sim \\mu$ and with final distribution --once stopped at $\\tau$-- equal to $B_\\tau\\sim \\nu$. The existence of such stopping times is guaranteed by Skorohod-type embeddings of probability measures in \"subharmoic order\" into Brownian motion. This problem is equivalent to an optimal mass transport problem with certain constraints, namely the optimal subharmonic martingale transport. Under the assumption of radial symmetry on $\\mu$ and $\\nu$, we show that the optimal stopping time is a hitting time of a suitable barrier, hence is non-randomized and is unique.
---
中文摘要:
给定$\\mathbb{R}^d$上的初始(分别,终端)概率测度$\\mu$(分别,$\\nu$),我们刻画了那些最大化或最小化函数$\\mathbb{E}B\\U 0-B\\Utau ^{\\alpha},$\\alpha>0$的最优停止时间$\\tau$,其中$(B\\U t)\\U t$是布朗运动,初始定律为$\\U 0\\sim mu$,最终分布为$\\tau$,一旦停止在$\\tau$,则等于$\\B\\uu\\tau\\sim\\nu$。这种停止时间的存在是通过在布朗运动中嵌入“次调和序”概率测度的Skorohod类型来保证的。该问题等价于具有一定约束条件的最优质量输运问题,即最优次调和鞅输运问题。在$\\ mu$和$\\ nu$上径向对称的假设下,我们证明了最佳停止时间是一个合适障碍物的击中时间,因此是非随机的,并且是唯一的。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->