英文标题:
《A Collaborative Approach to Angel and Venture Capital Investment
Recommendations》
---
作者:
Xinyi Liu and Artit Wangperawong
---
最新提交年份:
2018
---
英文摘要:
Matrix factorization was used to generate investment recommendations for investors. An iterative conjugate gradient method was used to optimize the regularized squared-error loss function. The number of latent factors, number of iterations, and regularization values were explored. Overfitting can be addressed by either early stopping or regularization parameter tuning. The model achieved the highest average prediction accuracy of 13.3%. With a similar model, the same dataset was used to generate investor recommendations for companies undergoing fundraising, which achieved highest prediction accuracy of 11.1%.
---
中文摘要:
矩阵分解用于为投资者生成投资建议。采用迭代共轭梯度法优化正则化的平方误差损失函数。探讨了潜在因素的数量、迭代次数和正则化值。可以通过提前停止或正则化参数调整来解决过拟合问题。该模型的平均预测精度最高,为13.3%。在一个类似的模型中,使用相同的数据集为正在筹款的公司生成投资者建议,预测准确率最高,为11.1%。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Information Retrieval 信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->