英文标题:
《Cryptoasset Factor Models》
---
作者:
Zura Kakushadze
---
最新提交年份:
2019
---
英文摘要:
We propose factor models for the cross-section of daily cryptoasset returns and provide source code for data downloads, computing risk factors and backtesting them out-of-sample. In \"cryptoassets\" we include all cryptocurrencies and a host of various other digital assets (coins and tokens) for which exchange market data is available. Based on our empirical analysis, we identify the leading factor that appears to strongly contribute into daily cryptoasset returns. Our results suggest that cross-sectional statistical arbitrage trading may be possible for cryptoassets subject to efficient executions and shorting.
---
中文摘要:
我们为每日加密资产回报的横截面提出了因子模型,并提供了数据下载、计算风险因子和样本外回溯测试的源代码。在“加密资产”中,我们包括所有加密货币和大量其他可获得交易所市场数据的数字资产(硬币和代币)。根据我们的实证分析,我们确定了似乎对加密资产每日回报有重大贡献的主导因素。我们的结果表明,对于有效执行和做空的加密资产,横截面统计套利交易可能是可能的。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->