英文标题:
《Gaussian stochastic volatility models: Scaling regimes, large
deviations, and moment explosions》
---
作者:
Archil Gulisashvili
---
最新提交年份:
2019
---
英文摘要:
In this paper, we establish sample path large and moderate deviation principles for log-price processes in Gaussian stochastic volatility models, and study the asymptotic behavior of exit probabilities, call pricing functions, and the implied volatility. In addition, we prove that if the volatility function in an uncorrelated Gaussian model grows faster than linearly, then, for the asset price process, all the moments of order greater than one are infinite. Similar moment explosion results are obtained for correlated models.
---
中文摘要:
在本文中,我们建立了高斯随机波动率模型中对数价格过程的样本路径大偏差和中偏差原则,并研究了退出概率、调用定价函数和隐含波动率的渐近行为。此外,我们还证明了,如果不相关高斯模型中的波动率函数增长快于线性增长,那么对于资产价格过程,所有大于1的阶矩都是无限的。相关模型也得到了类似的力矩爆炸结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->