英文标题:
《Adapted Wasserstein Distances and Stability in Mathematical Finance》
---
作者:
Julio Backhoff-Veraguas, Daniel Bartl, Mathias Beiglb\\\"ock and Manu
Eder
---
最新提交年份:
2020
---
英文摘要:
Assume that an agent models a financial asset through a measure Q with the goal to price / hedge some derivative or optimize some expected utility. Even if the model Q is chosen in the most skilful and sophisticated way, she is left with the possibility that Q does not provide an \"exact\" description of reality. This leads us to the following question: will the hedge still be somewhat meaningful for models in the proximity of Q? If we measure proximity with the usual Wasserstein distance (say), the answer is NO. Models which are similar w.r.t. Wasserstein distance may provide dramatically different information on which to base a hedging strategy. Remarkably, this can be overcome by considering a suitable \"adapted\" version of the Wasserstein distance which takes the temporal structure of pricing models into account. This adapted Wasserstein distance is most closely related to the nested distance as pioneered by Pflug and Pichler \\cite{Pf09,PfPi12,PfPi14}. It allows us to establish Lipschitz properties of hedging strategies for semimartingale models in discrete and continuous time. Notably, these abstract results are sharp already for Brownian motion and European call options.
---
中文摘要:
假设一个代理通过一个度量Q对金融资产进行建模,目标是对一些衍生产品进行定价/对冲或优化一些预期效用。即使模型Q是以最熟练和复杂的方式选择的,她也有可能不会提供对现实的“精确”描述。这就引出了以下问题:对冲对于接近Q的模型是否仍有一定意义?如果我们用通常的Wasserstein距离(比如)来衡量接近度,答案是否定的。类似于w.r.t.Wasserstein距离的模型可能会提供截然不同的信息,作为对冲策略的基础。值得注意的是,这可以通过考虑考虑定价模型的时间结构的瓦瑟斯坦距离的适当“调整”版本来克服。这种适应的Wasserstein距离与Pflug和Pichler提出的嵌套距离关系最为密切{Pf09,PfPi12,PfPi14}。它允许我们建立离散和连续时间半鞅模型套期保值策略的Lipschitz性质。值得注意的是,这些抽象结果对于布朗运动和欧式看涨期权来说已经很尖锐了。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->