英文标题:
《Continuous-Time Mean-Variance Portfolio Selection: A Reinforcement
Learning Framework》
---
作者:
Haoran Wang, Xun Yu Zhou
---
最新提交年份:
2019
---
英文摘要:
We approach the continuous-time mean-variance (MV) portfolio selection with reinforcement learning (RL). The problem is to achieve the best tradeoff between exploration and exploitation, and is formulated as an entropy-regularized, relaxed stochastic control problem. We prove that the optimal feedback policy for this problem must be Gaussian, with time-decaying variance. We then establish connections between the entropy-regularized MV and the classical MV, including the solvability equivalence and the convergence as exploration weighting parameter decays to zero. Finally, we prove a policy improvement theorem, based on which we devise an implementable RL algorithm. We find that our algorithm outperforms both an adaptive control based method and a deep neural networks based algorithm by a large margin in our simulations.
---
中文摘要:
我们用强化学习(RL)方法研究了连续时间均值方差(MV)投资组合选择问题。该问题是为了在勘探和开采之间实现最佳权衡,并被表述为一个熵正则化、松弛的随机控制问题。我们证明了该问题的最优反馈策略必须是方差随时间衰减的高斯最优反馈策略。然后,我们建立了熵正则化MV和经典MV之间的联系,包括可解性等价性和探索权重参数衰减为零时的收敛性。最后,我们证明了一个策略改进定理,并在此基础上设计了一个可实现的RL算法。我们发现,在我们的仿真中,我们的算法大大优于基于自适应控制的方法和基于深度
神经网络的算法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
PDF下载:
-->