由于 \x09E(X) = ∫E(X|Y=y)*p(y) dy = E[E(X|Y)]
因此有:\x09\x09E[E(X|Y)] = E(X); \x09\x09①
同理:\x09\x09E[E(X2|Y)] = E(X2)\x09\x09②
下面计算
Var[E(X|Y)] + E[var(X|Y)]
= E{E(X|Y)-E[E(X|Y)]}2 + E{E(X2|Y)-[E(X|Y)]2}
= E[E(X|Y)]2-{E[E(X|Y)]}2 + E{E(X2|Y)-[E(X|Y)]2}
= E[E(X|Y)]2-{E[E(X|Y)]}2 + E[E(X2|Y)]-E[E(X|Y)]2
= E[E(X2|Y)]-{E[E(X|Y)]}2 \x09\x09(第一项和第四项相消,剩2,3项)
= E(X2)- E(X)2\x09\x09\x09\x09\x09(由①②)
= Var(X)