摘要:在用神经网络进行系统建模时,建模误差的存在是难免的。为了减小这种误差,本文对连接时间非线性系统提出了一种新的神经网络辨识模型,它是由带有输入修正的
神经网络和稳定滤波器组合而成。文中给出了权值的学习算法,即权值是根据辨识误差的投影算法来改变,证明了在一定条件下辨识误差的收敛性。
原文链接:http://www.cqvip.com//QK/90555X/199901/3475656.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)