摘要:提出了连续属性的一种离散化方法,指出与其他离散化方法的不同之处:离散化算法应是与挖掘目标息息相关的.研究和探讨了分类问题中的属性离散化方法,以分类精度和正域的势来评估每一步离散化过程,并将评估结果进行反馈,直至所有属性的属性值判断完为止.通过UCI机器学习数据库的实验表明,属性值个数的减少会提高在数据集上运行
数据挖掘算法的效率,离散化后的分类正确率保持不变或有一定的提高.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)