全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
609 0
2018-02-10
摘要:针对增量学习的遗忘性问题和集成增量学习的网络增长过快问题,提出基于径向基神经网络(RBF)的集成增量学习方法。为了避免网络的遗忘性,每次学习新类别知识时都训练一个RBF神经网络,把新训练的RBF神经网络加入到集成系统中,从而组建成一个大的神经网络系统。分别采用最近中心法、最大概率法、最近中心与最大概率相结合的方法进行确定获胜子网络,最终结果由获胜子网络进行输出。在最大概率法中引入自组织映(S0M)的原型向量来解决类中心相近问题。为了验证网络的增量学习,用UCI机器学习库中Statlog(LandsatSatellke)数据集做实验,结果显示该网络在学习新类别知识后,既获得了新类别的知识也没有遗忘已学知识。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群