固定效应模型
在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。
个体固定效应模型。
个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型。
时刻固定效应模型。
时刻固定效应模型就是对于不同的截面(时刻点)有不同截距的模型。如果确知对于不同的截面,模型的截距显著不同,但是对于不同的时间序列(个体)截距是相同的,那么应该建立时刻固定效应模型。
时刻个体固定效应模型。
时刻个体固定效应模型就是对于不同的截面(时刻点)、不同的时间序列(个体)都有不同截距的模型。如果确知对于不同的截面、不同的时间序列(个体)模型的截距都显著地不相同,那么应该建立时刻个体效应模型。
随机效应模型
在固定效应模型中采用虚拟变量的原因是解释被解释变量的信息不够完整。也可以通过对误差项的分解来描述这种信息的缺失。
yit = a+ b1 xit + eit
其中误差项在时间上和截面上都是相关的,用3个分量表示如下:
eit = ui + vt + wit
其中ui~N(0, su2)表示截面随机误差分量;vt~N(0, sv2)表示时间随机误差分量;wit~N(0, sw2)表示混和随机误差分量。同时还假定ui,vt,wit之间互不相关,各自分别不存在截面自相关、时间自相关和混和自相关。上述模型称为随机效应模型。
随机效应模型和固定效应模型比较,相当于把固定效应模型中的截距项看成两个随机变量。一个是截面随机误差项(ui),一个是时间随机误差项(vt)。如果这两个随机误差项都服从正态分布,对模型估计时就能够节省自由度,因为此条件下只需要估计两个随机误差项的均值和方差。
假定固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,而且对均值的离差分别是ui和vt,固定效应模型就变成了随机效应模型。
补充:如果仅以样本自身效应为条件进行研究,宜选择固定效应模型;如果欲以样本对总体效应进行推论,则应采用随机效应模型。