摘要翻译:
我们对所有属的Hurwitz数提出了一个新的猜想递推解。该猜想是基于在toric Calabi-Yau流形的镜像上求解B型拓扑弦理论的最新进展,我们简要回顾了这些进展,为我们的猜想提供了一些背景。我们特别说明了这种B-模型解,结合单腿框架拓扑顶点的镜像对称性,如何导致具有三个Hodge类插入的Hodge积分的递归关系。我们在Hurwitz理论中的猜想是从无限分框极限中的分框顶点的这种递归得到的。
---
英文标题:
《Hurwitz numbers, matrix models and enumerative geometry》
---
作者:
Vincent Bouchard and Marcos Marino
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi-Yau manifolds, which we briefly review to provide some background for our conjecture. We show in particular how this B-model solution, combined with mirror symmetry for the one-leg, framed topological vertex, leads to a recursion relation for Hodge integrals with three Hodge class insertions. Our conjecture in Hurwitz theory follows from this recursion for the framed vertex in the limit of infinite framing.
---
PDF链接:
https://arxiv.org/pdf/0709.1458