摘要翻译:
本文从理论和实证两个方面对单变量时间序列的三种局部自适应估计方法进行了统一的研究。给出了计算临界值的一般方法。底层模型包含了指数族的所有分布,提供了很大的灵活性。将这些方法应用于模拟和真实的金融数据,分别按高斯模型、波动率模型、泊松模型、指数模型和伯努利模型分布。数值结果表明了这些方法的合理性能。
---
英文标题:
《Locally adaptive estimation methods with application to univariate time
series》
---
作者:
Mstislav Elagin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
The paper offers a unified approach to the study of three locally adaptive estimation methods in the context of univariate time series from both theoretical and empirical points of view. A general procedure for the computation of critical values is given. The underlying model encompasses all distributions from the exponential family providing for great flexibility. The procedures are applied to simulated and real financial data distributed according to the Gaussian, volatility, Poisson, exponential and Bernoulli models. Numerical results exhibit a very reasonable performance of the methods.
---
PDF链接:
https://arxiv.org/pdf/0812.0449