摘要翻译:
对于Spec(Z)上的有限型连通正则格式X,我们构造了一个互易同态\rho_x:C_x-->\pi_1^\ab(X),它是满射的,其核是恒等式的连通分量。(拓扑)群C_X是显式给出的,它完全由X上的点和曲线上的数据构成。对于有限域上的光滑变体,也有一个类似但较弱的陈述成立。我们的结果是基于G.Wiesend的早期工作。
---
英文标题:
《Covering data and higher dimensional global class field theory》
---
作者:
Moritz Kerz and Alexander Schmidt
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a connected regular scheme X, flat and of finite type over Spec(Z), we construct a reciprocity homomorphism \rho_X: C_X --> \pi_1^\ab(X), which is surjective and whose kernel is the connected component of the identity. The (topological) group C_X is explicitly given and built solely out of data attached to points and curves on X. A similar but weaker statement holds for smooth varieties over finite fields. Our results are based on earlier work of G. Wiesend.
---
PDF链接:
https://arxiv.org/pdf/0804.3419