全部版块 我的主页
论坛 经济学人 二区 外文文献专区
765 0
2022-03-14
摘要翻译:
我们引入了一个发送者-接收者停止游戏的模型,其中世界状态在整个游戏中遵循一个IID-过程。在每个时段,发送者观察当前状态,并向接收者发送一条消息,建议停止或继续。接收者,只看到消息而不看到状态,决定要么停止游戏,要么继续游戏,这将游戏带入下一个阶段。当接收者退出时,每个玩家的收益是状态的函数,状态越高,收益越高。游戏的视界可以是有限的,也可以是无限的。在博弈原语的温和条件下,在博弈方有足够耐心的情况下,证明了响应(即非牙牙学语)完美贝叶斯均衡(PBE)的存在唯一性。响应PBE具有非常简单的结构,它建立在为发送方识别一个易于实现和计算的门限策略类的基础上。在这些阈值策略的帮助下,我们导出了描述这种PBE的简单表达式。事实证明,在这个PBE中,接收者顺从地遵循发送者的建议。因此,令人惊讶的是,发送者独自起着决定性的作用,无论接收者的回报功能如何,发送者总是为自己获得最好的回报。
---
英文标题:
《Incentive compatibility in sender-receiver stopping games》
---
作者:
Aditya Aradhye, J\'anos Flesch, Mathias Staudigl and Dries Vermeulen
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  We introduce a model of sender-receiver stopping games, where the state of the world follows an iid--process throughout the game. At each period, the sender observes the current state, and sends a message to the receiver, suggesting either to stop or to continue. The receiver, only seeing the message but not the state, decides either to stop the game, or to continue which takes the game to the next period. The payoff to each player is a function of the state when the receiver quits, with higher states leading to better payoffs. The horizon of the game can be finite or infinite.   We prove existence and uniqueness of responsive (i.e. non-babbling) Perfect Bayesian Equilibrium (PBE) under mild conditions on the game primitives in the case where the players are sufficiently patient. The responsive PBE has a remarkably simple structure, which builds on the identification of an easy-to-implement and compute class of threshold strategies for the sender. With the help of these threshold strategies, we derive simple expressions describing this PBE. It turns out that in this PBE the receiver obediently follows the recommendations of the sender. Hence, surprisingly, the sender alone plays the decisive role, and regardless of the payoff function of the receiver the sender always obtains the best possible payoff for himself.
---
PDF链接:
https://arxiv.org/pdf/2004.01910
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群