摘要翻译:
我们证明了两个解析函数芽$(\c^2,0)\to(\c,0)$在拓扑上是右等价的当且仅当它们的零集的不可约分量之间存在一一对应关系,该不可约分量保持这些分量的重数,它们的Puiseux对,以及任何不同分量对的交数。
---
英文标题:
《A criterion for topological equivalence of two variable complex analytic
function germs》
---
作者:
Adam Parusinski
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that two analytic function germs $(\C^2,0) \to (\C,0)$ are topologically right equivalent if and only if there is a one-to-one correspondence between the irreducible components of their zero sets that preserves the multiplicites of these components, their Puiseux pairs, and the intersection numbers of any pairs of distinct components.
---
PDF链接:
https://arxiv.org/pdf/0804.0142