全部版块 我的主页
论坛 经济学人 二区 外文文献专区
315 0
2022-03-18
摘要翻译:
给出特征为$p>0$的对数格式的态射$x\to S$和$x′$在$s$模$p2$上的提升,利用Lorenzon的索引代数$a_x^{gp}$和$b_{x/s}$构造具有幂零可积连接的$o_x$-模与具有幂零$b_{x/s}$-线性Higgs场的索引$b_{x/s}$-模之间的等价性。如果其中任何一个满足更严格的幂零条件,我们发现连接的de Rham上同调与Higgs场的Higgs上同调之间存在同构。
---
英文标题:
《Logarithmic nonabelian Hodge theory in characteristic p》
---
作者:
Daniel Schepler
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Given a morphism $X \to S$ of log schemes of characteristic $p > 0$ and a lifting of $X'$ over $S$ modulo $p^2$, we use Lorenzon's indexed algebras $A_X^{gp}$ and $B_{X/S}$ to construct an equivalence between $O_X$-modules with nilpotent integrable connection and indexed $B_{X/S}$-modules with nilpotent $B_{X/S}$-linear Higgs field. If either satisfies a stricter nilpotence condition, we find an isomorphism between the de Rham cohomology of the connection and the Higgs cohomology of the Higgs field.
---
PDF链接:
https://arxiv.org/pdf/0802.1977
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群