全部版块 我的主页
论坛 经济学人 二区 外文文献专区
559 0
2022-03-21
摘要翻译:
本文研究了有限群商$$w_r=\{(x,y,z,t)xy-z^{2r}+t^2=0}/\mu_r(a,-a,1,0),r\geq1,$$的奇异锥面的辛几何,我们称之为Orbi-conifolds。构造了相关的orbifold辛针叶跃迁和orbifold辛flop。设$X$和$Y$是两个辛轨道,由这样一个翻牌连接起来。研究了$X$和$Y$上例外类的orbifold Gromov-Witten不变量,证明了它们具有同构的阮上同调。因此,我们验证了阮的一个猜想。
---
英文标题:
《Singular symplectic flops and Ruan cohomology》
---
作者:
Bohui Chen, An-Min Li, Qi Zhang, Guosong Zhao
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Symplectic Geometry        辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this paper, we study the symplectic geometry of singular conifolds of the finite group quotient $$ W_r=\{(x,y,z,t)|xy-z^{2r}+t^2=0 \}/\mu_r(a,-a,1,0), r\geq 1, $$ which we call orbi-conifolds. The related orbifold symplectic conifold transition and orbifold symplectic flops are constructed. Let $X$ and $Y$ be two symplectic orbifolds connected by such a flop. We study orbifold Gromov-Witten invariants of exceptional classes on $X$ and $Y$ and show that they have isomorphic Ruan cohomologies. Hence, we verify a conjecture of Ruan.
---
PDF链接:
https://arxiv.org/pdf/0804.3144
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群