摘要翻译:
我们用\zz^d-梯度来研究d维单体理想。本文利用Koszul函子从分心几何的角度解释局部上同调的拟理想,并显式地计算指数的多重性。这些多阶技术起源于对超几何微分方程组的研究。
---
英文标题:
《A-graded methods for monomial ideals》
---
作者:
Christine Berkesch, Laura Felicia Matusevich
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We use \ZZ^d-gradings to study d-dimensional monomial ideals. The Koszul functor is employed to interpret the quasidegrees of local cohomology in terms of the geometry of distractions and to explicitly compute the multiplicities of exponents. These multigraded techniques originate from the study of hypergeometric systems of differential equations.
---
PDF链接:
https://arxiv.org/pdf/0807.4306