摘要翻译:
我们提出将分布模型风险解释为期望损失对风险因子分布变化的敏感性,并用一组似然分布上的最大期望损失来度量投资组合的分布模型风险。散度可以是相对熵、Bregman距离或$F$-散度。我们给出了分布模型风险的计算公式,并从似然分布的集合中显式地确定了最坏情况分布。我们也给出了描述歧义厌恶决策者的分歧偏好的评价公式。
---
英文标题:
《Measuring Model Risk》
---
作者:
Thomas Breuer and Imre Csiszar
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We propose to interpret distribution model risk as sensitivity of expected loss to changes in the risk factor distribution, and to measure the distribution model risk of a portfolio by the maximum expected loss over a set of plausible distributions defined in terms of some divergence from an estimated distribution. The divergence may be relative entropy, a Bregman distance, or an $f$-divergence. We give formulas for the calculation of distribution model risk and explicitly determine the worst case distribution from the set of plausible distributions. We also give formulas for the evaluation of divergence preferences describing ambiguity averse decision makers.
---
PDF链接:
https://arxiv.org/pdf/1301.4832