摘要翻译:
设X是光滑的复仿射曲线,设R是X上微分算子环D中的右理想类空间。我们引入并研究了Pic(X)的一个fibration\γ:R\.我们将这种纤维与经典极限中的相应纤维联系起来,导出了一个整数不变量$n,它将\γ的纤维分解成Calogero-Moser空间(参见[BC])。我们还研究了Pic(D)基团对我们纤维化的作用;在Grassmannian描述R的框架下,我们解释了如何定义\γ,这是由于Cannings和Holland。
---
英文标题:
《Differential operators on an affine curve: ideal classes and Picard
groups》
---
作者:
Yuri Berest and George Wilson
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a smooth complex affine curve, and let R be the space of right ideal classes in the ring D of differential operators on X. We introduce and study a fibration \gamma : R \to Pic(X). We relate this fibration to the corresponding one in the classical limit, and derive an integer invariant $ n $ which indexes the decomposition of the fibres of \gamma into Calogero-Moser spaces (see [BC]). We also study the action of the group Pic(D) on our fibration; and we explain how to define \gamma in the framework of the Grassmannian description of R due to Cannings and Holland.
---
PDF链接:
https://arxiv.org/pdf/0810.0223