摘要翻译:
本文研究了五次曲面的Picard数。本文给出了IP^3中最大Picard数为45的复五次曲面的第一个例子。我们还研究了它的算法,并确定了zeta函数。类似的技术被应用于用其他几个Picard数来产生五次曲面,这些都是以前没有实现的。
---
英文标题:
《Quintic surfaces with maximum and other Picard numbers》
---
作者:
Matthias Schuett
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
This paper investigates the Picard numbers of quintic surfaces. We give the first example of a complex quintic surface in IP^3 with maximum Picard number 45. We also investigate its arithmetic and determine the zeta function. Similar techniques are applied to produce quintic surfaces with several other Picard numbers that have not been achieved before.
---
PDF链接:
https://arxiv.org/pdf/0812.3519