摘要翻译:
本文用模性、Artin-Tate猜想和类群理论证明了所有复K3曲面的Picard秩为20,其中Neron-Severi群的秩为20,并由定义在q上的因子生成。Elkies用不同的方法证明了椭圆K3曲面在Q上的Mordell-Weil秩为18是不可能的。然后我们将我们的方法应用于一般的奇异K3曲面,即具有秩为20的Neron-Severi群,但不一定是由q上的因子生成的。
---
英文标题:
《K3 surfaces with Picard rank 20》
---
作者:
Matthias Schuett
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We determine all complex K3 surfaces with Picard rank 20 over Q. Here the Neron-Severi group has rank 20 and is generated by divisors which are defined over Q. Our proof uses modularity, the Artin-Tate conjecture and class group theory. With different techniques, the result has been established by Elkies to show that Mordell-Weil rank 18 over Q is impossible for an elliptic K3 surface. We then apply our methods to general singular K3 surfaces, i.e. with Neron-Severi group of rank 20, but not necessarily generated by divisors over Q.
---
PDF链接:
https://arxiv.org/pdf/0804.1558