摘要翻译:
我们将连续时间的摆动收缩值刻画为具有适当边界条件的Hamilton-Jacobi-Bellman方程的唯一粘性解。带有罚金的合同的情况很简单,在这种情况下,只需要一个最终条件。反之,对于严格约束的合同,则会产生一个带有非标准状态约束的随机控制问题。我们用惩罚方法来处理这个问题:我们考虑一个一般的约束问题,用一系列适当的无约束问题的值函数来逼近这个值函数,在目标泛函中带有惩罚项。回到具有严格约束的摆动契约的情形,我们最后将值函数刻画为Hamilton-Jacobi-Bellman方程在适当的边界条件下的多项式增长的唯一粘性解。
---
英文标题:
《Optimal exercise of swing contracts in energy markets: an integral
constrained stochastic optimal control problem》
---
作者:
M. Basei, A. Cesaroni, T. Vargiolu
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We characterize the value of swing contracts in continuous time as the unique viscosity solution of a Hamilton-Jacobi-Bellman equation with suitable boundary conditions. The case of contracts with penalties is straightforward, and in that case only a terminal condition is needed. Conversely, the case of contracts with strict constraints gives rise to a stochastic control problem with a nonstandard state constraint. We approach this problem by a penalty method: we consider a general constrained problem and approximate the value function with a sequence of value functions of appropriate unconstrained problems with a penalization term in the objective functional. Coming back to the case of swing contracts with strict constraints, we finally characterize the value function as the unique viscosity solution with polynomial growth of the Hamilton-Jacobi-Bellman equation subject to appropriate boundary conditions.
---
PDF下载:
-->