英文标题:
《Optimal control of predictive mean-field equations and applications to
finance》
---
作者:
Bernt {\\O}ksendal and Agn\\`es Sulem
---
最新提交年份:
2015
---
英文摘要:
We study a coupled system of controlled stochastic differential equations (SDEs) driven by a Brownian motion and a compensated Poisson random measure, consisting of a forward SDE in the unknown process $X(t)$ and a \\emph{predictive mean-field} backward SDE (BSDE) in the unknowns $Y(t), Z(t), K(t,\\cdot)$. The driver of the BSDE at time $t$ may depend not just upon the unknown processes $Y(t), Z(t), K(t,\\cdot)$, but also on the predicted future value $Y(t+\\delta)$, defined by the conditional expectation $A(t):= E[Y(t+\\delta) | \\mathcal{F}_t]$. \\\\ We give a sufficient and a necessary maximum principle for the optimal control of such systems, and then we apply these results to the following two problems:\\\\ (i) Optimal portfolio in a financial market with an \\emph{insider influenced asset price process.} \\\\ (ii) Optimal consumption rate from a cash flow modeled as a geometric It\\^ o-L\\\' evy SDE, with respect to \\emph{predictive recursive utility}.
---
中文摘要:
我们研究了由布朗运动和补偿泊松随机测度驱动的受控随机微分方程(SDE)耦合系统,包括未知过程$X(t)$中的前向SDE和未知过程$Y(t),Z(t),K(t,\\cdot)$中的后向SDE(BSDE)。在时间$t$时,BSDE的驱动因素可能不仅取决于未知过程$Y(t)、Z(t)、K(t、\\cdot)$,还取决于预测的未来值$Y(t+\\delta)$,由条件期望$A(t)定义:=E[Y(t+\\delta)| \\mathcal{F}\\t]$我们给出了这类系统最优控制的一个充分必要的极大值原理,然后将这些结果应用于以下两个问题:\\\\(i)具有内部人影响的资产价格过程的金融市场中的最优投资组合。\\\\ \\(ii)从现金流建模为几何It“o-L”evy SDE的最优消费率,关于预测递归效用。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->