英文标题:
《Sequential Monte Carlo Samplers for capital allocation under
copula-dependent risk models》
---
作者:
Rodrigo S. Targino, Gareth W. Peters, Pavel V. Shevchenko
---
最新提交年份:
2015
---
英文摘要:
In this paper we assume a multivariate risk model has been developed for a portfolio and its capital derived as a homogeneous risk measure. The Euler (or gradient) principle, then, states that the capital to be allocated to each component of the portfolio has to be calculated as an expectation conditional to a rare event, which can be challenging to evaluate in practice. We exploit the copula-dependence within the portfolio risks to design a Sequential Monte Carlo Samplers based estimate to the marginal conditional expectations involved in the problem, showing its efficiency through a series of computational examples.
---
中文摘要:
在本文中,我们假设一个投资组合的多元风险模型已经建立,其资本作为齐次风险度量。然后,欧拉(或梯度)原理指出,要分配给投资组合的每个组成部分的资本必须作为一个罕见事件的预期条件来计算,这在实践中可能很难评估。我们利用投资组合风险中的copula依赖性,设计了一个基于序贯蒙特卡罗采样器的对问题中涉及的边际条件期望的估计,并通过一系列计算实例证明了其有效性。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->