英文标题:
《On magnitude, asymptotics and duration of drawdowns for L\\\'{e}vy models》
---
作者:
David Landriault, Bin Li, Hongzhong Zhang
---
最新提交年份:
2016
---
英文摘要:
This paper considers magnitude, asymptotics and duration of drawdowns for some L\\\'{e}vy processes. First, we revisit some existing results on the magnitude of drawdowns for spectrally negative L\\\'{e}vy processes using an approximation approach. For any spectrally negative L\\\'{e}vy process whose scale functions are well-behaved at $0+$, we then study the asymptotics of drawdown quantities when the threshold of drawdown magnitude approaches zero. We also show that such asymptotics is robust to perturbations of additional positive compound Poisson jumps. Finally, thanks to the asymptotic results and some recent works on the running maximum of L\\\'{e}vy processes, we derive the law of duration of drawdowns for a large class of L\\\'{e}vy processes (with a general spectrally negative part plus a positive compound Poisson structure). The duration of drawdowns is also known as the \"Time to Recover\" (TTR) the historical maximum, which is a widely used performance measure in the fund management industry. We find that the law of duration of drawdowns qualitatively depends on the path type of the spectrally negative component of the underlying L\\\'{e}vy process.
---
中文摘要:
本文研究了一些L\\\'{e}vy过程的下降幅度、渐近性和持续时间。首先,我们使用近似方法重新讨论了关于光谱负L\\{e}vy过程下降幅度的一些现有结果。对于任何标度函数在$0+$下表现良好的谱负L\\\'{e}vy过程,我们研究了下降量阈值接近零时下降量的渐近性。我们还证明了这种渐近性对额外的正复合泊松跳的扰动是鲁棒的。最后,由于L\\\'{e}vy过程的渐近结果和最近关于运行极大值的一些工作,我们导出了一大类L\\\'{e}vy过程(具有一般的谱负部分加上正的复合泊松结构)的下降持续时间定律。提取期限也称为“恢复时间”(TTR),即历史最大值,这是基金管理行业广泛使用的绩效指标。我们发现,下降持续时间的规律定性地取决于潜在L\\\'{e}vy过程的光谱负分量的路径类型。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->