英文标题:
《Sticky processes, local and true martingales》
---
作者:
Mikl\\\'os R\\\'asonyi and Hasanjan Sayit
---
最新提交年份:
2017
---
英文摘要:
We prove that for a so-called sticky process $S$ there exists an equivalent probability $Q$ and a $Q$-martingale $\\tilde{S}$ that is arbitrarily close to $S$ in $L^p(Q)$ norm. For continuous $S$, $\\tilde{S}$ can be chosen arbitrarily close to $S$ in supremum norm. In the case where $S$ is a local martingale we may choose $Q$ arbitrarily close to the original probability in the total variation norm. We provide examples to illustrate the power of our results and present applications in mathematical finance.
---
中文摘要:
我们证明了对于所谓的粘性过程$S$,存在一个等价的概率$Q$和一个任意接近$L^p(Q)$norm中$S$的$Q$-鞅$\\tilde{S}$。对于连续的$S$,$\\tilde{S}$可以在上确界范数中任意选择接近$S$。在$S$是局部鞅的情况下,我们可以在总变分范数中选择任意接近原始概率的$Q$。我们提供例子来说明我们的结果的力量,并展示在数学金融中的应用。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->