英文标题:
《Can You hear the Shape of a Market? Geometric Arbitrage and Spectral
Theory》
---
作者:
Simone Farinelli and Hideyuki Takada
---
最新提交年份:
2021
---
英文摘要:
Geometric Arbitrage Theory reformulates a generic asset model possibly allowing for arbitrage by packaging all assets and their forwards dynamics into a stochastic principal fibre bundle, with a connection whose parallel transport encodes discounting and portfolio rebalancing, and whose curvature measures, in this geometric language, the \'instantaneous arbitrage capability\' generated by the market itself. The cashflow bundle is the vector bundle associated to this stochastic principal fibre bundle for the natural choice of the vector space fibre. The cashflow bundle carries a stochastic covariant differentiation induced by the connection on the principal fibre bundle. The link between arbitrage theory and spectral theory of the connection Laplacian on the vector bundle is given by the zero eigenspace resulting in a parametrization of all risk neutral measures equivalent to the statistical one. This indicates that a market satisfies the (NFLVR) condition if and only if $0$ is in the discrete spectrum of the connection Laplacian on the cash flow bundle or of the Dirac Laplacian of the twisted cash flow bundle with the exterior algebra bundle. We apply this result by extending Jarrow-Protter-Shimbo theory of asset bubbles for complete arbitrage free markets to markets not satisfying the (NFLVR). Moreover, by means of the Atiyah-Singer index theorem, we prove that the Euler characteristic of the asset nominal space is a topological obstruction to the the (NFLVR) condition, and, by means of the Bochner-Weitzenb\\\"ock formula, the non vanishing of the homology group of the cash flow bundle is revealed to be a topological obstruction to (NFLVR), too. Asset bubbles are defined, classified and decomposed for markets allowing arbitrage.
---
中文摘要:
几何套利理论通过将所有资产及其远期动态打包成一个随机的主纤维束,重新构造了一个可能允许套利的通用资产模型,该连接的并行传输编码了贴现和投资组合再平衡,其曲率度量,在这种几何语言中,市场本身产生的“即时套利能力”。现金流束是与此随机主纤维束关联的向量束,用于向量空间纤维的自然选择。现金流束携带由主光纤束上的连接引起的随机协变微分。零特征空间给出了向量丛上连接拉普拉斯算子的套利理论和谱理论之间的联系,导致所有风险中性测度的参数化等价于统计测度。这表明市场满足(NFLVR)条件,当且仅当$0$在现金流束上的连接拉普拉斯函数或扭曲现金流束与外部代数束的狄拉克拉普拉斯函数的离散谱中。我们通过将完全无套利市场的Jarrow-Protter-Shimbo资产泡沫理论推广到不满足NFLVR的市场来应用这个结果。此外,通过Atiyah-Singer指数定理,我们证明了资产名义空间的Euler特征是(NFLVR)条件的拓扑障碍,并且,通过Bochner-Weitzenb“ock公式,现金流束同调群的不消失也被揭示为(NFLVR)的拓扑障碍。为允许套利的市场定义、分类和分解资产泡沫。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->