英文标题:
《Sequential Detection of Market shocks using Risk-averse Agent Based
Models》
---
作者:
Vikram Krishnamurthy and Sujay Bhatt
---
最新提交年份:
2015
---
英文摘要:
This paper considers a statistical signal processing problem involving agent based models of financial markets which at a micro-level are driven by socially aware and risk- averse trading agents. These agents trade (buy or sell) stocks by exploiting information about the decisions of previous agents (social learning) via an order book in addition to a private (noisy) signal they receive on the value of the stock. We are interested in the following: (1) Modelling the dynamics of these risk averse agents, (2) Sequential detection of a market shock based on the behaviour of these agents. Structural results which characterize social learning under a risk measure, CVaR (Conditional Value-at-risk), are presented and formulation of the Bayesian change point detection problem is provided. The structural results exhibit two interesting prop- erties: (i) Risk averse agents herd more often than risk neutral agents (ii) The stopping set in the sequential detection problem is non-convex. The framework is validated on data from the Yahoo! Tech Buzz game dataset.
---
中文摘要:
本文考虑了一个统计信号处理问题,涉及基于代理的金融市场模型,这些模型在微观层面上由具有社会意识和风险厌恶的交易代理驱动。这些代理人通过订单簿,除了他们收到的关于股票价值的私人(嘈杂的)信号外,还利用以前代理人的决策信息(社会学习),进行股票交易(买卖)。我们对以下内容感兴趣:(1)对这些风险规避代理人的动态进行建模,(2)基于这些代理人的行为对市场冲击进行顺序检测。在风险度量CVaR(Conditional Value at risk)下,给出了表征社会学习的结构结果,并给出了贝叶斯变化点检测问题的公式。结构结果显示了两个有趣的特性:(i)风险厌恶型代理比风险中性代理更容易从众(ii)序列检测问题中的停止集是非凸的。该框架基于雅虎网站的数据进行了验证!科技巴斯游戏数据集。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->