英文标题:
《Purely pathwise probability-free Ito integral》
---
作者:
Vladimir Vovk
---
最新提交年份:
2016
---
英文摘要:
This paper gives several simple constructions of the pathwise Ito integral $\\int_0^t\\phi d\\omega$ for an integrand $\\phi$ and a price path $\\omega$ as integrator, with $\\phi$ and $\\omega$ satisfying various topological and analytical conditions. The definitions are purely pathwise in that neither $\\phi$ nor $\\omega$ are assumed to be paths of stochastic processes, and the Ito integral exists almost surely in a non-probabilistic financial sense. For example, one of the results shows the existence of $\\int_0^t\\phi d\\omega$ for a cadlag integrand $\\phi$ and a cadlag integrator $\\omega$ with jumps bounded in a predictable manner.
---
中文摘要:
本文给出了被积函数$\\phi$和价格路径$\\omega$的路径Ito积分$\\int_0^t\\phi d\\omega$的几种简单构造,其中$\\phi$和$\\omega$满足各种拓扑和分析条件。这些定义纯粹是路径性的,因为$\\phi$和$\\omega$都不是随机过程的路径,伊藤积分几乎肯定存在于非概率金融意义上。例如,其中一个结果显示了$\\int_0^t\\phi d\\omega$对于cadlag积分器$\\phi$和cadlag积分器$\\omega$的存在,跳跃以可预测的方式有界。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->