英文标题:
《High-order ADI scheme for option pricing in stochastic volatility models》
---
作者:
Bertram D\\\"uring, James Miles
---
最新提交年份:
2015
---
英文摘要:
We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial-boundary value problems of convection-diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer\'s ADI time-stepping method, to obtain an efficient method which is fourth-order accurate in space and second-order accurate in time. Numerical experiments for the European put option pricing problem using Heston\'s stochastic volatility model confirm the high-order convergence.
---
中文摘要:
我们提出了一种新的高阶交替方向隐式(ADI)有限差分格式,用于求解具有混合导数和非常数系数的对流扩散型初边值问题,因为它们来自期权定价中的随机波动率模型。我们的方法将不同的高阶空间离散化与Hundsdorfer和Verwer的ADI时间步进法相结合,得到了一种空间四阶精度、时间二阶精度的有效方法。利用Heston的随机波动率模型对欧洲看跌期权定价问题进行了数值实验,证实了高阶收敛性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
PDF下载:
-->