英文标题:
《Robust pricing--hedging duality for American options in discrete time
financial markets》
---
作者:
Anna Aksamit and Shuoqing Deng and Jan Ob\\l\\\'oj and Xiaolu Tan
---
最新提交年份:
2017
---
英文摘要:
We investigate pricing-hedging duality for American options in discrete time financial models where some assets are traded dynamically and others, e.g. a family of European options, only statically. In the first part of the paper we consider an abstract setting, which includes the classical case with a fixed reference probability measure as well as the robust framework with a non-dominated family of probability measures. Our first insight is that by considering a (universal) enlargement of the space, we can see American options as European options and recover the pricing-hedging duality, which may fail in the original formulation. This may be seen as a weak formulation of the original problem. Our second insight is that lack of duality is caused by the lack of dynamic consistency and hence a different enlargement with dynamic consistency is sufficient to recover duality: it is enough to consider (fictitious) extensions of the market in which all the assets are traded dynamically. In the second part of the paper we study two important examples of robust framework: the setup of Bouchard and Nutz (2015) and the martingale optimal transport setup of Beiglb\\\"ock et al. (2013), and show that our general results apply in both cases and allow us to obtain pricing-hedging duality for American options.
---
中文摘要:
我们研究了离散时间金融模型中美式期权的定价对冲对偶性,其中一些资产是动态交易的,而另一些资产,例如一系列欧式期权,只是静态交易。在本文的第一部分中,我们考虑了一个抽象环境,其中包括具有固定参考概率测度的经典情况以及具有非支配概率测度族的鲁棒框架。我们的第一个洞见是,通过考虑空间的(普遍)扩大,我们可以将美式期权视为欧式期权,并恢复定价对冲的双重性,这可能会在最初的公式中失败。这可能被视为对原始问题的一种软弱表述。我们的第二个洞见是,缺乏二元性是由缺乏动态一致性造成的,因此,具有动态一致性的不同扩张足以恢复二元性:考虑(虚构的)市场扩展就足够了,在该市场中,所有资产都是动态交易的。在论文的第二部分中,我们研究了鲁棒框架的两个重要例子:Bouchard和Nutz(2015)的设置和Beiglb \\“ock等人(2013)的鞅最优运输设置,并表明我们的一般结果适用于这两种情况,并允许我们获得美式期权的定价对冲对偶性。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->