英文标题:
《No-arbitrage and hedging with liquid American options》
---
作者:
Erhan Bayraktar and Zhou Zhou
---
最新提交年份:
2018
---
英文摘要:
Since most of the traded options on individual stocks is of American type it is of interest to generalize the results obtained in semi-static trading to the case when one is allowed to statically trade American options. However, this problem has proved to be elusive so far because of the asymmetric nature of the positions of holding versus shorting such options. Here we provide a unified framework and generalize the fundamental theorem of asset pricing (FTAP) and hedging dualities in arXiv:1502.06681 (to appear in Annals of Applied Probability) to the case where the investor can also short American options. Following arXiv:1502.06681, we assume that the longed American options are divisible. As for the shorted American options, we show that the divisibility plays no role regarding arbitrage property and hedging prices. Then using the method of enlarging probability spaces proposed in arXiv:1604.05517, we convert the shorted American options to European options, and establish the FTAP and sub- and super-hedging dualities in the enlarged space both with and without model uncertainty.
---
中文摘要:
由于单只股票上的大多数交易期权都是美式期权,因此有兴趣将半静态交易中获得的结果推广到允许静态交易美式期权的情况。然而,由于持有与卖空这类期权的头寸的不对称性质,这个问题迄今为止被证明是难以解决的。在这里,我们提供了一个统一的框架,并将arXiv:1502.06681(将出现在应用概率年鉴中)中的资产定价(FTAP)基本定理和对冲二元论推广到投资者也可以做空美式期权的情况。根据arXiv:1502.06681,我们假设长期的美式期权是可分割的。对于做空的美式期权,我们证明了可分性对套利资产和套期保值价格没有影响。然后,利用arXiv:1604.05517中提出的扩大概率空间的方法,我们将做空的美式期权转换为欧式期权,并在扩大的空间中建立FTAP和亚、超对冲对偶,无论有无模型不确定性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->