英文标题:
《Convex functions on dual Orlicz spaces》
---
作者:
Freddy Delbaen, Keita Owari
---
最新提交年份:
2018
---
英文摘要:
In the dual $L_{\\Phi^*}$ of a $\\Delta_2$-Orlicz space $L_\\Phi$, that we call a dual Orlicz space, we show that a proper (resp. finite) convex function is lower semicontinuous (resp. continuous) for the Mackey topology $\\tau(L_{\\Phi^*},L_\\Phi)$ if and only if on each order interval $[-\\zeta,\\zeta]=\\{\\xi: -\\zeta\\leq \\xi\\leq\\zeta\\}$ ($\\zeta\\in L_{\\Phi^*}$), it is lower semicontinuous (resp. continuous) for the topology of convergence in probability. For this purpose, we provide the following Koml\\\'os type result: every norm bounded sequence $(\\xi_n)_n$ in $L_{\\Phi^*}$ admits a sequence of forward convex combinations $\\bar\\xi_n\\in\\mathrm{conv}(\\xi_n,\\xi_{n+1},...)$ such that $\\sup_n|\\bar\\xi_n|\\in L_{\\Phi^*}$ and $\\bar\\xi_n$ converges a.s.
---
中文摘要:
在$\\ Delta\\u 2$-Orlicz空间$\\ L\\Phi ^ ^*}的对偶$\\ L\\uPhi ^ ^}中,我们称之为对偶Orlicz空间,我们证明了对于Mackey拓扑$\\ tau(L\\uPhi ^*},L\\uPhi)$,适当(有限)凸函数是下半连续的(连续的),当且仅当在每个序区间$[-\\zeta,\\zeta]=\\\\ xi:-\\zeta\\leq\\xi\\leq\\zeta}$($\\zeta\\In L\\u{\\ Phi ^*}$),对于概率收敛的拓扑,它是下半连续的(分别是连续的)。为此,我们提供了以下Koml类型的结果:$L{\\Phi ^*}$中的每个范数有界序列$(\\xi\\n)允许一个前凸组合序列$\\bar\\xi\\n\\in\\mathrm{conv}(\\xi\\n,\\xi\\u{n+1},…)$这样$\\ sup\\u n | \\ bar\\xi\\u n | \\ in L\\Phi ^*}$和$\\ bar\\xi\\u n$收敛于a.s。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Functional Analysis 功能分析
分类描述:Banach spaces, function spaces, real functions, integral transforms, theory of distributions, measure theory
Banach空间,函数空间,实函数,积分变换,分布理论,测度理论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->