英文标题:
《A closed-form representation of mean-variance hedging for additive
processes via Malliavin calculus》
---
作者:
Takuji Arai and Yuto Imai
---
最新提交年份:
2017
---
英文摘要:
We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump type models have already been suggested, but none is suited to develop numerical methods of the values of strategies for any given time up to the maturity. In this paper, we aim to derive a new explicit closed-form representation, which enables us to develop an efficient numerical method using the fast Fourier transforms. Note that our representation is described in terms of Malliavin derivatives. In addition, we illustrate numerical results for exponential L\\\'evy models.
---
中文摘要:
我们主要研究资产价格服从指数加性过程的模型的均值-方差套期保值问题。已经提出了跳跃型模型的均值-方差套期保值策略的一些表示,但没有一种表示方法适合开发任何给定时间到到期的策略值的数值方法。在本文中,我们的目标是导出一种新的显式闭式表示,这使我们能够利用快速傅立叶变换开发一种有效的数值方法。请注意,我们的表示是用Malliavin导数描述的。此外,我们还举例说明了指数L趵evy模型的数值结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->